Abstract
Abstract— License plate is the unique identity of the vehicle, which serves as proof of the legitimacy of the operation of the vehicle in the form of a plate or other material with certain specifications issued by the police and contains the area code, registration number and validity period and installed on the vehicle. License plates are often used in automated parking systems and vehicle identification in case of traffic violations. So, it is necessary to build a system for detection and identification of license plates. The proposed license plate detection and identification system is divided into three main processes, namely license plate detection, character segmentation, and character recognition. The detection process uses transfer learning techniques using Faster R-CNN Inception V2. The segmentation process uses traditional computer vision with morphological operations and contours extraction. Then the character recognition process uses the MobileNet V2 transfer learning technique as an architecture for character classification. The recognition accuracy compared between MobileNet V2 and TesseractOCR shows that MobileNet V2 is superior with an accuracy rate of 96%, while Tesseract-OCR has a poor accuracy of 59%. Keywords— Deep Learning, Convolutional Neural Network, License Plate Detection, Character Segmentation, Character Recognition
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Emerging Technology and Advanced Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.