Abstract

Psychiatric disorders exhibit a shared neuropathology, yet the diverse presentations among patients necessitate the identification of transdiagnostic subtypes to enhance diagnostic and treatment strategies. This study aims to unveil potential transdiagnostic subtypes based on personalized gray matter morphological abnormalities. A total of 496 patients with psychiatric disorders and 255 healthy controls (HCs) from three distinct datasets (one for discovery and two for validation) were enrolled. Individualized gray matter morphological abnormalities were determined using normative modeling to identify transdiagnostic subtypes. In the discovery dataset, two transdiagnostic subtypes with contrasting patterns of structural abnormalities compared to HCs were identified. Reproducibility and generalizability analyses demonstrated that these subtypes could be generalized to new patients and even to new disorders in the validation datasets. These subtypes were characterized by distinct disease epicenters. The gray matter abnormal pattern in subtype 1 was mainly linked to excitatory receptors, whereas subtype 2 showed a predominant association with inhibitory receptors. Furthermore, we observed that the gray matter abnormal pattern in subtype 2 was correlated with transcriptional profiles of inflammation-related genes, while subtype 1 did not show this association. Our findings reveal two robust transdiagnostic biotypes, offering novel insights into psychiatric nosology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.