Abstract

AbstractHighly ordered pattern formation of block copolymers (BCPs) within nanoscale templates is of great interest for generating diverse ordered nanostructures. Here, introduced is a combined methodology of nanotransfer printing (nTP) and BCP self‐assembly to guide the formation of spherical nanodots within a printed crossbar nanotemplate. By successfully accommodating poly(styrene‐b‐dimethylsiloxane) (PS‐b‐PDMS) BCPs in the guiding metallic crossbar nanotemplate (≈30 × 30 nm2), a well‐organized array of single‐domain PDMS spheres (≈10 nm) with a square symmetry is successfully obtained in an extremely short annealing time (<5 s). The self‐consistent field theory simulation results theoretically explain the spontaneous one‐to‐one accommodation of PDMS spheres in the confined area of the crossbar template. This approach can potentially be extended to the many other BCP materials and morphologies to diversify the geometry of self‐assembled BCP and/or transfer‐printed nanopatterns for various types of nanodevice applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call