Abstract

AbstractThe chemical and electronic interactions at metal/oxide heterojunctions is pivotal in determining the electronic properties of oxide devices utilized in microelectronics, catalysis, and photovoltaic systems. In this study, interfacial oxidation migrations within a model heterostructure system, consisting of a La0.7Sr0.3MnO3 film overlaid by various metallic (Ti, Al, Cu, Ag, and Au) ultrathin layers are systematically investigated. It is experimentally demonstrated that at elevated deposition temperature, the oxygen‐active ultrathin overlayers of base metals such as Ti and Al significantly derive oxygen from the underlying La0.7Sr0.3MnO3 film, inducing a perovskite to brownmillerite phase transition in the underlying functional oxide film. Conversely, no structural transitions are observed for La0.7Sr0.3MnO3 film when it is capped by noble metals (Au, Ag), which possess relative high oxidation formation energy. These observations are crucial for the development of novel crystalline and electronic architectures in metal/oxide heterostructures, offering a refined approach to modulate interfacial reactivity without compromising the functionality of oxide‐based heterojunction devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.