Abstract
The all-optical magnetization reversal of magnetic layers, by picosecond optical pulses, is of particular interest as it shows the potential for energy-efficient and fast magnetic tunnel junction (MTJ) elements. This approach requires memory elements that are optically and electronically accessible, for optical writing and electronic read-out. In this paper, we propose the integration of indium tin oxide (ITO) as a transparent conducting electrode for magnetic tunnel junctions in integrated spintronic–photonic circuits. To provide light with sufficient energy to the MTJ free layer and allow electrical read-out of the MTJ state, we successfully integrated indium tin oxide as a top transparent electrode. The study shows that ITO film deposition by physical vapor deposition with conditions such as high source power and low O2 flow achieves smooth and conductive thin films. Increase in grain size was associated with low resistivity. Deposition of 150 nm ITO at 300 W, O2 flow of 1 sccm and 8.10−3 mbar vacuum pressure results in 4.8 × 10−4 Ω.cm resistivity and up to 80% transmittance at 800 nm wavelength. The patterning of ITO using CH4/H2 chemistry in a reactive ion etch process was investigated showing almost vertical sidewalls for diameters down to 50 nm. The ITO based process flow was compared to a standard magnetic tunnel junctions fabrication process flow based on Ta hard mask. Electrical measurements validate that the proposed process based on ITO results in properties equivalent to the standard process. We also show electrical results of magnetic tunnel junctions having all-optical switching top electrode fabricated with ITO for optical access. The developed ITO process flow shows very promising initial results and provides a way to fabricate these new devices to integrate all-optical switching magnetic tunnel junctions with electronic and photonic elements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have