Abstract

We present a correlative experimental and theoretical study of bound excitons in hydrogen-doped ZnO, with a particular focus on the dynamics of their metastable state confined in the sub-surface region, using a combination of surface-sensitive characterisation techniques and density functional theory calculations. A metastable sub-surface emission at 3.31 eV found in H-doped ZnO is attributed to the radiative recombination of indirect excitons localised at basal plane stacking faults (BSFs) where the excitonic transition involves electrons bound to bond-centre hydrogen donors in the potential well of the BSF. Additionally, our work shows the electrical transport of ZnO Schottky junctions is dominated by electrons confined at BSFs in the near-surface region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.