Abstract

Basal plane stacking faults (BSFs) with density of ∼1 × 106 cm−1 are identified as the dominant defect in the annealed ZnO thin films grown on c-plane sapphire by atomic layer deposition. The dominant peak centered at 3.321 eV in low-temperature photoluminescence measurements is attributed to the emission from the BSFs. The emission mechanism is considered to be the confined indirect excitons in the region of quantum-well-like structure formed by the BSFs. The observed energy shift of 19 meV with respect to the BSF-bounded exciton at low temperature may be caused by the localization effect associated with the coupling between BSF quantum wells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.