Abstract

Radon (Rn-222; a radioactive noble gas) is characterized by large temporal variations that differ significantly from variations of (i) other trace elements in geogas (noble gases); (ii) variation patterns of other dynamic geophysical systems (atmospheric, tidal). Consensus exists that there is no simple and straightforward understanding of the phenomena and its behaviour. This lacuna in the understanding of the underlying principles hampers the development of applications—such as radon as a proxy of processes in the seismogenic context. Using results from field investigations and simulation experiments the GSI suggested that an unidentified extraterrestrial component, probably in solar radiation, drives periodic radon signals in the diurnal and annual frequency bands. Recent findings from experimental investigations shed additional perspectives allowing a new evaluation of the issue. Particular transient signals, measured with alpha and gamma detectors, are interpreted to reflect the influence of artificial activity. Criteria are (i) signals lasting several hours that occur around midday on workdays (Sunday–Thursday); (ii) signals composed of a train of around 10 strong pulses, each lasting less than 15 min, occurring within several hours once a week, from Wednesday afternoon/evening to Thursday morning. A first interpretation is that an unidentified artificial activity of some sort (industrial?) generates and emits an unidentified agent that reaches enhanced confined mode experiments at the GSI laboratory, which respond to the incoming agent in the form of radon signals. Developing the capability of identification of such an earth-bound source generating an influencing agent is a key step towards understanding of external influence on radioactivity of radon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call