Abstract

Exploratory monitoring of radon is conducted at one location in the deep underground Gran Sasso National Laboratory (LNGS). Measurements (15-min resolution) are performed over a time span of ca 600 days in the air of the surrounding calcareous country rock. Using both α- and γ-ray detectors, systematic and recurring radon signals are recorded. Two primary signal types are determined: (i) non-periodic multi-day (MD) signals lasting 2-10 days and (ii) daily radon (DR) signals-which are of a periodic nature exhibiting a primary 24-h cycle (θ=0.48). The local ancillary environmental conditions (pressure, temperature) seem not to affect radon in air monitored at the site. Long-term patterns of daytime measurements are different from the pattern of night-time measurements indicating a day-night modulation of γ-radiation from radon in air. The phenomenology of the MD and DR signals is similar to situations encountered at other locations where radon is monitored with a high time resolution in geogas at upper crustal levels. In accordance with recent field and experimental results, it is suggested that a component of solar irradiance is affecting the radiation from radon in air, and this influence is further modulated by the diurnal rotation of the Earth. The occurrence of these radon signals in the 1 km deep low-radiation underground geological environment of LNGS provides new information on the time variation of the local radiation environment. The observations and results place the LNGS facility as a high-priority location for performing advanced investigations of these geophysical phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.