Abstract
We give explicit MacPherson cycles for the Chern-MacPherson class of a closed affine algebraic variety $X$ and for any constructible function $\alpha$ with respect to a complex algebraic Whitney stratification of $X$. We define generalized degrees of the global polar varieties and of the MacPherson cycles and we prove a global index formula for the Euler characteristic of $\alpha$. Whenever $\alpha$ is the Euler obstruction of $X$, this index formula specializes to the Seade-Tibar-Verjovsky global counterpart of the Le-Teissier formula for the local Euler obstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.