Abstract

Let R be a real closed field and let X be an affine algebraic variety over R. We say that X is universally map rigid (UMR for short) if, for each irreducible affine algebraic variety Z over R, the set of nonconstant rational maps from Z to X is finite. A bijective map Open image in new window from an affine algebraic variety over R to X is called weak change of the algebraic structure of X if it is regular and φ−1 is a Nash map, which preserves nonsingular points. We prove the following rigidity theorem: every affine algebraic variety over R is UMR up to a weak change of its algebraic structure. Let us introduce another notion. Let Y be an affine algebraic variety over R. We say that X and Y are algebraically unfriendly if all the rational maps from X to Y and from Y to X are trivial, i.e., Zariski locally constant. From the preceding theorem, we infer that, if dim (X)≥1, then there exists a set Open image in new window of weak changes of the algebraic structure of X such that, for each t,s ∈ R with t≠s, Open image in new window and Open image in new window are algebraically unfriendly. This result implies the following expected fact: For each (nonsingular) affine algebraic variety X over R of positive dimension, the natural Nash structure of X does not determine the algebraic structure of X. In fact, the moduli space of birationally nonisomorphic (nonsingular) affine algebraic varieties over R, which are Nash isomorphic to X, has the same cardinality of R. This result was already known under the special assumption that R is the field of real numbers and X is compact and nonsingular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call