Abstract
We study how to minimize the number of invariants that is sufficient for the Whitney equisingularity of a one parameter deformation of corank one finitely determined holomorphic germ ƒ : (ℂn, 0) → (ℂn, 0). According to a result of Gaffney, these are the 0-stable invariants and all polar multiplicities which appear in the stable types of a stable deformation of the germ. First we describe all stable types, then we show how the invariants in the source and the target are related and reduce the number using these relations. We also investigate the relationship between the local Euler obstruction and the polar multiplicities of the stable types. We show an algebraic formula for the local Euler obstruction in terms of the polar multiplicities and show that the Euler obstruction is an invariant for the Whitney equisingularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.