Abstract
Automatic Dependent Surveillance-Broadcast (ADS-B) is a critical technology to transform aircraft navigation by improving safety and overall effectiveness in the aviation industry. However, overlapping of ADS-B signals is a large challenge, especially for space-based ADS-B systems. Existing traditional methods are not effective when dealing with cases that overlapped signals with small difference (such as power difference and carrier frequency difference) require to be separated. In order to generate an effective separation performance of the ADS-B signals by exploring its temporal relationship, Independently Convolutional Gated Recurrent Neural Unit (Ind-CGRU) is presented for encoder–decoder network construction. Experimental results on the dataset SR-ADSB demonstrate that the proposed Ind-CGRU achieves good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.