Abstract

AbstractThe response of crystalline Ge to indentation has been studied over a range of maximum loads. At a certain load, an unusual ‘giant pop-in’ event occurs, in which a discontinuous extension of >1 μm is observed in the force-displacement curve. In such cases, load release curves show a pronounced ‘elbowing’ response, leading to increased depth recovery. TEM and Raman microspectroscopy revealed the presence of amorphous material in the residual impression. To examine cracking, a sequence of cross-sections was milled through the indent and images taken using an automated method (the ‘slice-and-view’ method). Using 3-D reconstruction software, the data was segmented and reconstructed into a 3-dimensional representation of the cracks around the indent. Applying this technique to indents featuring a giant pop-in, it was deduced that the inelastic elbowing observed was a bending response of material detached by lateral cracking. The giant pop-in is attributable to material removal, caused by lateral cracks formed during loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.