Abstract

The plane finite element analysis is mostly adopted in soft rock tunnel excavation instead of three-dimensional nonlinear finite element analysis at present, but almost every underground engineering is a spatial nonlinear problem which, in many cases, cannot be simplified into a plane problem. This paper presents a three-dimensional elastic-plastic finite element analysis of incremental variable plastic in soft rock tunnel excavation, through analyzing the tunnel excavation and support, and combining the incremental variable plastic stiffness method into three-dimensional elastic-plastic model in light of the advantage of increment variable stiffness method and the incremental additional load method. Simulation results show that, the three-dimensional elastic-plastic finite element analysis model presented in this paper changes little final deformation under different load release coefficients, together with small support stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.