Abstract
Three-dimensional elastic-plastic finite element analysis (FEA) is performed in this paper to simulate the complicated stresses and deformation of wrinklebends in a pipeline from its bending formation to operation under cyclic loading. Three plastic hardening models (isotropic, kinematic and combined isotropic/kinematic) are discussed and used in FEA of wrinklebend response that considers strain hardening and Bauschinger effects. The FEA simulation is carried out first for an elbow held at constant pressure while subject to cyclic bending, which serves as a benchmark case. The results show that the three hardening models lead to very different outcomes. Comparable FEA simulations are then developed for wrinklebends under cyclic pressure. Detailed parametric analysis is considered, including finite-element type, element sensitivity, computation time, and material input data. Based on those results viable nonlinear FEA model is developed as the basis to quantify wrinklebend response under service-like conditions. Based on the FEA results, fatigue damage is quantified using the Smith, Watson and Topper (SWT) parameter, and thereafter a damage criterion is proposed to predict the fatigue life of a wrinklebend under the pressure cycles of 72%–10% of SMYS for typical X42 pipeline steel. The results show that the wrinkle aspect ratio H/L is a key parameter to control the service life of a wrinklebend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.