Abstract

BackgroundTooth cementum covers the surface of the root dentine and is produced and laid down in thin layers continuously throughout life. Functionally, different types of tooth cementum can be distinguished, which can be roughly divided into acellular (primary cementum) and cellular (secondary cementum) forms. One main type is acellular extrinsic fibre cementum (AEFC), which covers the cervical and middle third of the root. Light microscopic examinations of transverse sections of AEFC show lamellar patterns of alternating light and dark lines called growth or incremental lines. Following mammalian research, a seasonal rhythm of incremental line formation is also assumed in humans. Previous attempts at visualising incremental lines in the AEFC by scanning electron microscopy (SEM) were not particularly successful. The aim of the present study was to detect incremental lines in the AEFC and to analyse their underlying structure by SEM. MethodsFor this purpose, non-embedded and resin-embedded transverse and longitudinal sections of three single-rooted teeth obtained from different patients were investigated. The thin sections were not pre-treated (e.g. by etching, grinding or coating). ResultsLamellar structures, which could be identified as incremental lines, were detectable in both transverse and longitudinal sections, with transverse orientation in the cross-section and longitudinal orientation in the longitudinal section. The lamellar pattern was created by broad fibre-rich layers alternating with narrow fibre-poor layers. The orientation of the collagen fibres changed from layer to layer from transverse to radial direction. The visibility of the layered structure discovered varied significantly. ConclusionsThe study demonstrate that it is possible, in principle, to detect incremental lines in AEFC and to identify their basic structure using SEM. Our results suggest that the density and orientation of the fibres play an essential role in the formation of incremental lines. Functional aspects seem to be of particular importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call