Abstract

Superconducting quantum interference devices (SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors (TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed (TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux (I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call