Abstract
Pro-inflammatory cytokines and chemokines play critical roles in autoimmune diseases including rheumatoid arthritis (RA). Recently, it has been reported that β-arrestin 1 and 2 are involved in the regulation of inflammation. We hypothesized that β-arrestin 1 and 2 play critical roles in murine models of RA. Using a collagen-induced arthritis (CIA) and a human TNFα transgenic (TNFtg) mouse model, we demonstrated that β-arrestin 1 and 2 expression are significantly increased in joint tissue of CIA mice and TNFtg mice. In fibroblast-like synoviocytes (FLS) isolated from hind knee joint of CIA mice, we observed an increase of β-arrestin 1 and 2 protein and mRNA levels in the early stage of arthritis. In FLS, low molecular weight hyaluronan (HA)-induced TNFα and IL-6 production was increased by overexpression of β-arrestin 1 but decreased by overexpression of β-arrestin 2 demonstrating isoform specific regulation. TNFα and HA induced an increase of β-arrestin 1 and 2 expression in FLS, while high mobility group box (HMGB)-1 only stimulated β-arrestin 1 expression. TNFα- or HA-induced β-arrestin 2 expression was blocked by a p38 inhibitor. To examine the in vivo role of β-arrestin 2 in the pathogenesis of arthritis, WT and β-arrestin 2 KO mice were subjected to collagen antibody-induced arthritis (CAIA). β-Arrestin 2 KO mice exhibited more severe arthritis in CAIA. Thus β-arrestin 2 is anti-inflammatory in CAIA. These composite observations suggest that β-arrestin 1 and 2 differentially regulate FLS inflammation and increased β-arrestin 2 may reduce experimental arthritis severity.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have