Abstract

A significant discharge capacity increase (larger than 3 times) for the gas-diffusion-electrode (GDE) used in Li-air cells was demonstrated through modification of the carbon surface with long-chain hydrophobic molecules. The capacity loss of the Li-air activated carbon cathode was found to be caused by the formation of undesired surface passivation. The mechanism of such passivation was identified as the formation of dense Li oxide films directly on the surface of the carbon during the oxygen reduction reaction. Such dense layers of Li oxide are here identified as the root cause of the undesired passivation, which blocks electrochemical reactions, increases the impedance and drops the discharge voltage rapidly. This investigation reveals that the capacity for the gas-diffusion-electrode can be substantially increased, if the activated carbon is modified by attaching long-chain hydrophobic molecules onto the surface. The carbon surface modification significantly delays the formation of the dense Li oxide layers. Therefore, the discharge capacity for the GDE is substantially increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.