Abstract

Low-melting-point silicon–boron system alloys are promising for low-temperature reactive melt infiltration to reduce high-temperature damage to silicon carbide fibers during the densification of SiC/SiC composites. Meanwhile, the oxidation resistance of the alloys will have a large impact on the intrinsic oxidation resistance of the composite. Herein, three alloys, Si-14.88B-7Mo, Si-14.88B-7Ti, and Si-14.88B-7Cr, were fabricated to investigate the oxidation behavior in air at 1000–1400 °C. The results showed that the oxidation weight gains of the Si-B-Mo alloy after oxidation at 1400 °C for 100 h were 0.9 mg/cm–2, which were only 50 and 1.5% of those of Si-B-Ti and Si-B-Cr alloys, respectively. The excellent oxidation resistance of Si-B-Mo alloys at 1000–1400 °C was attributed to the formation of glassy-surface layers and the dense internal oxide layer. The dense oxide layer and the low solubility of Mo ions in SiO2 inhibit the volatilization of MoO3 and the oxidation reaction, reducing the oxidation rate of the Si-B-Mo alloy. The difference in the coefficients of thermal expansion for SiO2 and TiO2 led to penetrating cracks in the oxide layer of the Si-B-Ti alloy during cooling, thereby reducing the oxidation resistance. In addition, the rate of volatilization of Cr2O3 as CrO3 in an oxidation atmosphere above 1200 °C increased significantly in the Si-B-Cr alloy. The simultaneous volatilization of B2O3 and CrO3 resulted in the formation of loose oxide layers in the CrB2 region of the Si-B-Cr alloy, leading to severe oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call