Abstract
This article investigates the device variability induced by the total ionizing dose (TID) effects in a commercial 16-nm bulk nFinFETs, using specially designed test structures and measurement procedures aimed at maximizing the matching between devices. DC static characteristic measurements show that below 100 Mrad(SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) the device variability is slightly affected by the total accumulated dose. However, when the total dose reaches 100 Mrad(SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ), the device variability increases significantly showing a correlation with pre-irradiation electrical responses of the devices. Transistors characterized by higher drain current exhibit the worst TID degradation. This phenomenon is likely due to the impact of random dopant fluctuations on the TID effects and/or to variations in the hydrogen concentration responsible for the TID-induced interface traps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.