Abstract

The single event effect (SEE) and the total ionizing dose (TID) effect of a commercial enhancement mode gallium nitride (GaN) high electron nobility transistor (HEMT) with p-type gate structure and cascode structure are studied by using the radiation of heavy ions and <sup>60</sup>Co gamma in this paper. The safe operating areas ofSEE, the sensitive parameters degradation of TID effect and the SEE and TID characteristics of GaN HEMT device are respectively presented. The experimental results show that the SEE and TID effect have less influence on the p-type gate GaN device. The linear energy transfer (LET) threshold of the single event Burnout effect (SEB) is higher than 37 MeV·cm<sup>2</sup>/mg and the failure threshold of TID effect is above 1M rad (Si) for p-type gate GaN device. However, the GaN HEMT device with cascode structure is much more sensitive to SEE and TID effect than p-type gate GaN device. Under heavy ions at LET of 22 MeV·cm<sup>2</sup>/mg and a cumulative dose of 200 krad (Si), the SEB phenomenon and parameters-degradation of cascode-type GaN HEMT are respectively observed. Besides, the circuit structure of the cascode-type GaN HEMT device is analyzed by using metallographic microscope imaging and focused ions beam technology. It reveals the possible reason why it is sensitive to SEB and TID for cascode-type GaN HEMT. These results show that the extra carriers caused by heavy ion radiation can tunnel the Schottky barrier formed by gate metal and AlGaN layer, leading to a large source-drain current in GaN HEMT device. Meanwhile, it is shown that the metal oxide semiconductor field-effect transistor in cascode circuit for TP90H180PS GaN HEMT may be the main reason why the cascode-type GaN HEMT is sensitive to TID.

Highlights

  • These results show that the extra carriers caused by heavy ion radiation can tunnel the Schottky barrier formed by gate metal and AlGaN layer, leading to a large source-drain current in gallium nitride (GaN) HEMT device

  • 1) (Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China) 2) (University of Chinese Academy of Sciences, Beijing 100049, China)

Read more

Summary

GaN Systems

图 1 实验现场 (a) 单粒子效应实验现场; (b) 总剂量效 应实验现场 Fig. 1. 单粒子效应和总剂量效应实验样品分别选用 同一批次 GaN Systems 公司 650 V GS0650111L 型和 Transphorm 公司 900 V TP90H180PS 型的 GaN HEMT 各 5 片, 正面开封图如图 2 所示, 实 验样品信息如表 1 所列. 图 4(a) 给出了 GS0650111L 和 TP90H180PS 器件分别在能量为 210 MeV 的 Ge (LET 值 为 37 MeV·cm2/mg) 和能量为 169 MeV 的 Ti (LET 值为 22 MeV·cm2/mg) 离子辐照下, 器件漏源电. 图 4 (a) GS0650111L 和 TP90H180PS 器件安全工作区域; (b) 漏、栅端电流随时间的变化 Fig. 4. 当入射粒子 LET 值分别为 37 和 22 MeV·cm2/mg 时 , 随着器件的栅极电压 Vgs 从 –5 V 增 加 到 0 V, GS0650111L 和 TP90H180PS 器件的漏极电压 Vds 分别保持 650 和 50 V 不 变. 图 5 为 TP90H180PS 器件发生 SEB 效应的 实 物 图 , 从 图 5(a) 可 以 发 现 Cascode 结 构 中 的 耗尽型 GaN HEMT 出现了 SEB 现象, 且主要发 生在插指结构的金属布线层上, 而硅 (Si) 金属氧 化物场效应晶体管 (metal oxide semiconductor field effect transistor, MOSFET) 未出现 SEB 现象

Si MOSFET 栅电极
AlGaN势垒层 二维电子气 GaN沟道层
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call