Abstract

Hydrogen sulfide (H2S), an endogenous gaseous signal molecule, exhibits protective effect against ischemic injury. However, its underlying mechanism is not fully understood. We have recently reported that exogenous H2S decreases the accumulation of autophagic vacuoles in mouse brain with ischemia/reperfusion (I/R) injury. To further investigate whether this H2S-induced reduction of autophagic vacuoles is caused by the decreased autophagosome synthesis and/or the increased autophagic degradation inautophagic flux, we performed in vitro and in vivo studies using SH-SY5Y cells for the oxygen and glucose deprivation/reoxygenation (OGD/R) and mice for the cerebral I/R, respectively. NaHS (a donor of H2S) treatment significantly increased cell viability and reduced cerebral infarct volume. NaHS treatment reduced the OGD/R-induced elevation in LC3-II (an autophagic marker), which was completely reversed by co-treatment with an autophagic flux inhibitor bafilomycin A1 (BafA1). However, H2S did not affect the OGD/R-induced increase of the ULK1 self-association and decrease of the ATG13 phosphorylation, which are the critical steps for the initiation of autophagosome formation. Cerebral I/R injury caused an increase in LC3-II, a decrease in p62 and the accumulation of autophagosomes in the cortex and the hippocampus, which were inhibited by NaHS treatment. This H2S-induced decline of LC3-II in ischemic brain was reversed by BafA1. Moreover, BafA1 treatment abolished the protection of H2S on the cerebral infarction. Collectively, the neuroprotection of exogenous H2S against ischemia/hypoxia and reperfusion/reoxygenation injury is mediated by the enhancement of autophagic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call