Abstract

Glaucoma is an irreversible and blinding neurodegenerative disease of the eye, and is characterized by progressive loss of retinal ganglion cells (RGCs). Since endogenous hydrogen sulfide (H2S) was reported to be involved in neurodegeneration in the central nervous system, the authors aimed to develop a chronic ocular hypertension (COH) rat model simulating glaucoma and therein test the H2S level together with the retinal protein expressions of related synthases, and further investigated the effect of exogenous H2S supplement on RGC survival. COH rat model was induced by cross-linking hydrogel injection into anterior chamber, and the performance of the model was assessed by intraocular pressure (IOP) measurement, RGC counting and retinal morphological analysis. Endogenous H2S level was detected along with the retinal protein expressions of H2S-related synthases cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in the COH rats. Retinal H2S level and RGC survival were evaluated again after NaHS (a H2S donor) treatment in the COH rats. The results showed that the COH model succeeded in simulating glaucoma features, and retinal H2S level decreased significantly when the retinal protein expressions of CBS, CSE and 3-MST were downregulated generally in the COH rats. Furthermore, the decrease of retinal H2S level and loss of RGCs were both improved by NaHS treatment in experimental glaucoma, without obvious variation of IOP. Our study revealed that the intracameral injection of cross-linking hydrogel worked efficiently in modeling glaucoma, and H2S had protective effect on RGCs and might be involved in the pathological mechanism of glaucomatous neuropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call