Abstract
In this paper we investigated lipid and metabolite changes in diabetic neuropathy, using untargeted lipidomics and metabolomics analyses of the spinal cords from streptozotocin-treated diabetic rats.170 metabolites and 45 lipids were dysregulated in the painful diabetic neuropathy (PDN) phase. Pathway enrichment analysis revealed perturbations in starch and sucrose, tryptophan, pyrimidine, cysteine and methionine, thiamine, tyrosine, and nucleotides. The disturbance of tyrosine, tryptophan, methionine, triacylglycerol, and phosphatidylethanolamine metabolism indicated that pathological mechanisms in the PDN involved energy metabolism, oxidative stress, and neural reparative regeneration. These revelations offered potential biomarkers for PDN and enriched the comprehension of the complex molecular mechanisms characterizing PDN, establishing a solid foundation for subsequent inquiries into neural convalescence and recovery after PDN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.