Abstract

The aim of this work was to develop a yogurt fortified with curcumin. Curcumin is a lipophilic compound with a wide range of biological activities; however, it presents low water solubility and low bioavailability, and therefore it was the first to be encapsulated in solid lipid nanoparticles (SLNs). Then the influence of the incorporation of curcumin-loaded SLNs on the physicochemical (i.e., pH, titratable acidity, syneresis and color) and rheological properties of yogurt during its shelf-life (30 days at 4 °C) was evaluated. SLN incorporation into yogurt did not affect pH and titratable acidity compared to the control (i.e., plain yogurt) during shelf-life, even though the yogurt with SLNs presented lower values of pH (4.25 and 4.34) and acidity (0.74% lactic acid and 0.84% lactic acid) than the control in the end, respectively. Furthermore, the yogurt with SLNs presented slightly higher values of syneresis than the control during the shelf-life; however, it did not present visual differences in whey separation. Relative to the color, the incorporation of SLNs into the yogurt imparted a strong yellow color to the sample but did not affect color stability during shelf-life. Both samples showed flow curves with yield stress and shear-thinning behavior during shelf-life, and, regarding the viscoelastic behavior, both showed a typical weak viscoelastic gel with an elastic structure. Overall, curcumin-loaded SLNs incorporation did not affect the physicochemical and rheological stability of yogurt during shelf-life, showing a promising application for the development of new functional foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.