Abstract

Blend polymers composed of natural polymers are a ubiquitous biomaterial class due to their suitable mechanical and biological characterization. In the present study, composite scaffolds based on bacterial cellulose (BC)/silk fibroin (SF) with bioactive glass nanoparticles (BGNPs) were developed to enhance osteogenesis in human adipose derived stem cells (hASCs). The scanning electron microscopy (SEM) results of BGNPs indicated a spherical morphology and size ranging from 15 to 30 nm. The presence of BC and BGNPs reduced the pore diameter of SF scaffolds to about 210 ± 10 μm and 205 ± 10 μm, respectively, while increasing their compressive strength and compressive modulus. FTIR analyses proved the presence of BGNPs, BC and SF in the scaffolds. Flow cytometry data confirmed the surface markers for hASCs. The results also showed that BC and BGNPs addition to BC/SF scaffolds decreased degradation and swelling rate. The gene expression (Runx2, alkaline phosphatase and osteocalcin) studies signified the osteogenic potential of BGNPs in BC/SF scaffolds on hASCs. Eventually, the increased cell adhesion, viability and differentiation in the BC/SF and BC/SF/BGNPs composite scaffolds drawn from MTT, SEM, Alizarin red staining and alkaline phosphatase activity confirmed that these scaffolds promise to serve as a therapeutic candidate for bone defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call