Abstract

In the first part of the paper, certain incomplete character sums over a finite field Fpr are considered which in the case of finite prime fields Fp are of the form ∑A+N−1n=Aχ(g(n))ψ(f(n)), where A and N are integers with 1≤N<p, g and f are polynomials over Fp, and χ denotes a multiplicative and ψ an additive character of Fp. Excluding trivial cases, it is shown that the above sums are at most of the order of magnitude N1/2pr/4. Recently, Shparlinski showed that a polynomial f over the integers which coincides with the discrete logarithm of the finite prime field Fp for N consecutive elements of Fp must have a degree at least of the order of magnitude Np−1/2. In this paper this result is extended to arbitrary Fpr. The proof is based on the above new bound for incomplete hybrid character sums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.