Abstract

The purpose of the paper is to present new estimates on incomplete character sums in finite fields that are of the strength of Burgess’ celebrated theorem for prime fields. More precisely, an inequality of this type is obtained in $${F_{p^2}}$$ and also for binary quadratic forms, improving on the work of Davenport–Lewis and on several results due to Burgess. The arguments are based on new estimates for the multiplicative energy of certain sets that allow us to improve the amplification step in Burgess’ method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.