Abstract

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA) [2]. It is well known that the problem of discrete logarithm is NP-hard on group on elliptic curve (EC) [5]. The orders of groups of an algebraic affine and projective curves of Edwards [3, 9] over the finite field Fpn is studied by us. We research Edwards algebraic curves over a finite field, which are one of the most promising supports of sets of points which are used for fast group operations [1]. We construct a new method for counting the order of an Edwards curve [F ] d p E over a finite field Fp . It should be noted that this method can be applied to the order of elliptic curves due to the birational equivalence between elliptic curves and Edwards curves. The method we have proposed has much less complexity 22 O p log p at not large values p in comparison with the best Schoof basic algorithm with complexity 8 2 O(log pn ) , as well as a variant of the Schoof algorithm that uses fast arithmetic, which has complexity 42O(log pn ) , but works only for Elkis or Atkin primes. We not only find a specific set of coefficients with corresponding field characteristics for which these curves are supersingular, but we additionally find a general formula by which one can determine whether a curve [F ] d p E is supersingular over this field or not. The symmetric of the Edwards curve form and the parity of all degrees made it possible to represent the shape curves and apply the method of calculating the residual coincidences. A birational isomorphism between the Montgomery curve and the Edwards curve is also constructed. A oneto- one correspondence between the Edwards supersingular curves and Montgomery supersingular curves is established. The criterion of supersingularity for Edwards curves is found over F pn .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.