Abstract

Incoherent light pulses emitted from a xenon flash lamp were used to anneal radiation damage in (100) silicon implanted with 2×1015 31P+/cm2 at 100 keV. Electrical carrier concentration has been determined by means of differential sheet resistivity and Hall effect together with the anodic oxidation stripping technique; the surface photovoltage technique has been used to evaluate bulk lifetime and Rutherford backscattering and transmission electron microscopy for analysis of radiation damage. Damage recovery appears to take place via a solid phase epitaxial process. Electrical activity and carrier mobility values of samples annealed by incoherent light are similar to those obtained by laser, electron beam, and furnace annealing. The bulk lifetime of minority carriers is not degraded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call