Abstract
This paper presents a mathematical model of smart loads in demand response (DR) schemes, which is integrated into centralized unit commitment (UC) with optimal power flow coupled energy management systems for isolated microgrids for optimal generation and peak load dispatch. The smart loads are modeled with a neural network (NN) load estimator as a function of the ambient temperature, time of day, time of use price, and the peak demand imposed by the microgrid operator. To develop the NN-based smart load estimator, realistic data from an actual energy hub management system is used for supervised training. Based on these, a novel microgrid energy management system (MEMS) framework based on a model predictive control approach is proposed, which yields optimal dispatch decisions of dispatchable generators, energy storage system, and peak demand for controllable loads, considering power flow and UC constraints simultaneously. To study the impact of DR on the microgrid operation with the proposed MEMS framework, a CIGRE benchmark system is used that includes distributed energy resources and renewables based generation. The results show the feasibility and benefits of the proposed models and approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.