Abstract

With the new challenges brought by the high penetration of Renewable Energy Resources (RESs) into the modern grid, developing new solutions and concepts are necessary. Microgrid (MG) is one of the new concepts introduced to overcome upcoming issues in the modern electricity grids. MGs and Multi-Microgrids (MMGs) are defined as the building blocks of smart grids. MGs are the small units, where power generation and consumption happen at the same location and MG makes the decisions by itself. MGs can operate grid-connected or island mode depending on the functionality of the MG. Energy Management System (EMS) is the decision making centre of the MG. The data from the devices is received by the EMS and after processing, the commands are sent to the controllable components. Management of voltage, active and reactive power, neutral current, unit commitment and economic dispatch are of the tasks of EMS. In this PhD thesis, an optimal EMS for MGs and MMGs is developed. The main objective of this project by developing the EMS is to optimize the energy flow in the MGs and MMGs to obtain peak load shaving in a cost beneficial system. In order to achieve an efficient EMS, communication system, forecasting system, scheduling system, and optimization system are modelled and developed. Different types of EMS operation, centralized, decentralized and distributed, are investigated in this work to achieve the best combination for MMG EMS operation. The communication system is mainly utilizing Modbus TCP/IP protocol for data transmission at local level and Internet of Things (IoT) protocols (MQTT) for the global communication level. A communication operation algorithm is proposed to manage the MMG EMS under different communication operation modes and communication failure conditions. Furthermore, a monitoring system is developed to collect the data from different devices in the MG. The data is processed in the MG EMS and the commands are sent to components through the communication infrastructure. The link between MGs and MMGs is through the proposed two-level communication system, where the expansion of MGs to a MMG is investigated. In the MMG, MGs are functioning as a unit while having different priorities and operating under different policies. Each MG has its own MG EMS and the EMSs transfer information through the communication system between each other in either centralized, decentralized, distributed, or no communication modes under the MMG EMS. The forecasting system is required in the EMS to predict the future MG characteristics such as power generation and consumption. The forecasted data is the input to the optimization and scheduling system of EMS. Employing the forecasting system in the EMS would increase the accuracy of the optimization and scheduling systems. In this thesis, the timeseries-based forecasting algorithms are employed to predict next day’s active power using the load data, generation data, weather data and temperature data as the inputs. The heart of EMS is the scheduling and optimization system. The purpose of the scheduling system is to define the amount and the time of energy flow in the MG for different generation sources and consumption loads. Furthermore, scheduling system is responsible for peak load shaving and valley filling. On the other hand, the optimization system has the task of minimizing the operation costs of the MGs. The role of market in the scheduling and optimization is important. Time of Use (ToU) tariff is the pricing system, which determines the peak and off peak hours for energy usage pricing. In order to apply the optimization system, a model of the system, an objective function and systems constraints are defined, where aging of battery energy storage system (BESS), operational cost of components and MG cost benefits are considered. To operate the EMS scheduling and optimization system, IBM CPLEX Optimization Studio solver conducts the optimization while for the scheduling system, objective function and constraints are defined in MATLAB. In this thesis, a rule-based, MILP and MIQP optimization system for commercial MGs including electric vehicles (EVs) are proposed to investigate performance of MG EMS for different case studies. In this thesis, the literature for different scheduling and forecasting systems is investigated and different optimization algorithms are analysed. The communication protocols utilized in this research are described and compared to other protocols in the literature. In different chapters of this thesis, the modelling of MGs and MMG EMS, different modules of EMS, forecasting, optimization, scheduling and communication systems are described and analysed. A novel communication system for MMG EMS operation is proposed for commercial buildings. The performance of MG EMS and MMG EMS is examined for power and neutral current sharing, operation cost optimization, and demand peak shaving applications and results are compared to investigate the performance of proposed algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call