Abstract

The bull's-eye structure in the terahertz (THz) frequency region has ample applications owing to its ability to focus free-propagating waves into subwavelength apertures, resulting in enhanced transmission, that is, extraordinary transmission. However, its coupling properties have been primarily discussed in terms of the normal plane-wave incidence to the structure. In this study, we investigate the multiple resonances in extraordinary transmission with normal and oblique incident waves. The experiment using a widely tunable and high-power THz wave source revealed two types of resonances. The main resonance split depends on the incident angle, and the other corresponds to the side lobe of the main resonances. The results are explained by a simple analytical model using a finite number of scattering media. The analysis is supported by the full-wave simulation using the finite-element method, which agrees with the experimental results. The coupling mechanisms will be applicable to design devices, such as THz biosensing devices or THz antennas for rapid communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.