Abstract
Background: Ciprofloxacin induces SOS response and mutagenesis by activation of UmuD’2C (DNA polymerase V) and DinB (DNA polymerase IV) in Escherichia coli, leading to antibiotic resistance during therapy. Inactivation of DNA polymerase V can result in the inhibition of mutagenesis in E. coli. Objectives: The aim of this research was to investigate the effect of UmuC inactivation on resistance to ciprofloxacin and SOS mutagenesis in E. coli mutants. Methods: Ciprofloxacin-resistant mutants were produced in a umuC- genetic background in the presence of increasing concentrations of ciprofloxacin. The minimum inhibitory concentration of umuC-mutants was measured by broth dilution method. Alterations in the rifampin resistance-determing region of rpoB gene were assessed by PCR amplification and DNA sequencing. The expression of SOS genes was measured by quantitative real-time PCR assay. Results: Results showed that despite the induction of SOS response (overexpression of recA, dinB, and umuD genes) following exposure to ciprofloxacin in E. coli umuC mutants, resistance to ciprofloxacin and SOS mutagenesis significantly decreased. However, rifampicin-resistant clones emerged in this genetic background. One of these clones showed mutations in the rifampicin resistance-determining region of rpoB (cluster II). The low mutation frequency of E. coli might be associated with the presence and overexpression of umuD gene, which could somehow limit the activity of DinB, the location and type of mutations in the β subunit of RNA polymerase. Conclusions: In conclusion, for increasing the efficiency of ciprofloxacin against Gram-negative bacteria, use of an inhibitor of umuC, along with ciprofloxacin, would be helpful.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have