Abstract
The induction of SOS and adaptive responses by alkylating agents was studied in Escherichia coli mutants tagA and alkA deficient in 3-methyladenine-DNA glycosylase activities. The SOS response was measured using an sfiA::lacZ operon fusion. The sfiA operon, in the double mutant tagA alkA, is induced at 5–50-fold lower concentrations of all tested methylating and ethylating compounds, as compared to the wild-type strain. In all cases, the tagA mutation, which inactivates the constitutive and specific 3-alkyladenine-DNA glycosylase I (TagI), sensitizes the strain to the SOS response. The sensitization effect of alkA mutation, which inactivates the inducible 3-alkyladenine-DNA glycosylase II (TagII), is observed under conditions which allow the induction of the adaptive response. We conclude that the persistence of 3-methyladenine and 3-ethyladenine residues in DNA most likely leads to the induction of the SOS functions. In contrast, the adaptive response, evaluated by O 6-methylguanine-DNA methyltransferase activity in cell extracts, was not affected by either tagA or alkA mutations. The results suggest that the SOS and adaptive responses use different alkylation products as an inducing “signal”. However, adaptation protein TagII inhibits the induction of the SOS response to some extent, due to its action at the level of signal production. Finally, we provide conditions to improve short-term bacterial tests for the detection of genotoxic alkylating agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.