Abstract

The functional stability of the ‘external’ NADH dehydrogenase and complexes I–IV of the respiratory chain of maize mitochondria was studied during mitochondria incubation in vitro at elevated temperatures. The increase in the incubation temperature from 0°C to 37°C significantly changed the stability of the respiratory chain. At 27°C and higher, the rate of oxidation of NAD-depended substrates decreased drastically, which is related to inactivation of complex I. Complexes II, III and IV of the respiratory chain and the ‘external’ NADH dehydrogenase were functionally stable at elevated temperatures. Moreover, the possibility of electron transport during oxidation of NAD-dependent substrates, in particular malate, bypasses complex I using rotenon insensitive NADH dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.