Abstract

Heat stress has been recognized as a serious problem in dairy farms around the world due to the increasing heat waves and higher genetic potential of dairy cows. In Chile, milk production is concentrated in the southern regions of the country, where animals graze all year around, consequently being exposed directly to environmental conditions. Nevertheless, there are few studies conducted in Chile that have evaluated at the commercial level the impact of heat stress on milk production. The aim of this study was to assess the effects of summer conditions, across periods, on the milk production of cows at different stages of lactation in a dairy farm located in Southern Chile. Daily meteorological and milk yield records of three summers from a dairy farm were collected to characterize the relationship between two thermal stress indices and milk yield. The thermal comfort indices used were the comprehensive climate index (CCI), and the adjusted temperature humidity index (THIadj). The average values of CCI and THIadj were dependent on the period (P<0.0001) with maximum CCI of 40.2°C, 31.7°C, and 27.5°C for the 2012-2013, 2015-2016, and 2016-2017 periods, respectively. A similar response was recorded when THIadj was used (85.5, 78.0, and 73.9, respectively). In the 2012-2013 summer, 44.4% of the days presented conditions of heat stress (CCI ≥23), a value that fell to 26.7% in the summer of 2015-2016 and only 5.6% in the 2016-2017. On the opposite, when the THIadj was used, these values were 50%, 48.9%, and 5.6%, respectively. In conclusion, both comfort thermal indices are good tools to determine the risk of thermal stress in dairy cows, with a large variation between the three summer periods but also between indices. Likewise, cows in the early and mid-lactation periods are more affected in terms of milk yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.