Abstract

Mitochondrial superoxide (O(2)(.)) production is an important mediator of oxidative cellular injury. While NADH dehydrogenase (NDH) is a critical site of this O(2)(.) production; its mechanism of O(2)(.) generation is not known. Therefore, the catalytic function of NDH in the mediation of O(2)(.) generation was investigated by EPR spin-trapping. In the presence of NADH, O(2)(.) generation from NDH was observed and was inhibited by diphenyleneiodinium chloride (DPI), indicating involvement of the FMN-binding site of NDH. Addition of FMN increased O(2)(.) production. Destruction of the cysteine ligands of iron-sulfur clusters decreased O(2)(.) generation, suggesting a secondary role of this site. This inhibitory effect was reversed by addition of FMN. However, FMN addition could not reverse the inhibition of NDH by either DPI or heat denaturation, demonstrating involvement of both FMN and its FMN-binding protein moiety in the catalysis of O(2)(.) generation. O(2)(.) production by NDH also induced self-inactivation. Immunospin-trapping with anti-DMPO antibody and subsequent mass spectrometry was used to define the sites of oxidative damage of NDH. A DMPO adduct was detected on the 51-kDa subunit and was O(2)(.)-dependent. Alkylation of the cysteine residues of NDH significantly inhibited NDH-DMPO spin adduct formation, indicating involvement of protein thiyl radicals. LC/MS/MS analysis of a tryptic digest of the 51-kDa polypeptide revealed that cysteine (Cys(206)) and tyrosine (Tyr(177)) were specific sites of NDH-derived protein radical formation. Thus, two domains of the 51-kDa subunit, Gly(200)-Ala-Gly-Ala-Tyr-Ile-Cys(206)-Gly-Glu-Glu-Thr-Ala-Leu-Ile-Glu-Ser-Ile-Glu-Gly-Lys(219) and Ala(176)-Tyr(177)-Glu-Ala-Gly-Leu-Ile-Gly-Lys(184), were demonstrated to be susceptible to oxidative attack, and their oxidative modification results in decreased electron transfer activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.