Abstract

Simple SummaryPhosphorus (P) is an indispensable element needed for the growth and development of all living organisms. Phosphorus is mined primarily from non-renewable phosphate rock reserves. The use of P as fertilizer and feed additives continues to rise with the increasing global population. We therefore need to find an alternative and renewable, as well as sustainable, source of P to fulfill the demands of agriculture and livestock. Phosphorus recovered as struvite from livestock wastewater could be a sustainable alternative to commercial P sources, while its application has only been limited to arable lands as fertilizer. This study elucidates that struvite can also be used as an alternative P source in animal feed other than fertilizer through proper pre-treatment. Phosphorus recovery from livestock wastewater and its reutilization as an animal feed ingredient would therefore be a good strategy to substitute commercial P sources and ensure societal sustainability.Apart from using as fertilizer for plants, the application of struvite may be expanded to animal feed industries through proper pre-treatment. This study aimed to investigate the safety and efficacy of using pre-treated struvite (microwave irradiated struvite (MS) and incinerated struvite (IS)) in animal feeds. For safety assessment, an in vivo toxicity experiment using thirty female Sprague Dawley rats (average body weight (BW) of 200 ± 10 g) was conducted. The rats were randomly divided into five groups, including a control. Based on the BW, MS and IS were applied daily by oral administration with 1 and 10 mg kg−1-BW (MS1 and MS10; IS1 and IS10) using dimethyl sulfoxide (DMSO) as a vehicle. A series of jar tests were conducted for four hours to check the solubility of the MS and IS at different pH (pH 2, 4, 5, 6 and 7) and compared to a commercial P source (monocalcium phosphate, MCP, control). The toxicity experiment results showed no significant differences among the treatments in BW and organ (liver, kidney, heart, and lung) weight of rats (p > 0.05). There were no adverse effects on blood parameters and the histopathological examination showed no inflammation in the organ tissues in MS and IS treated groups compared to the control. In an in vitro solubility test, no significant difference was observed in ortho-phosphate (O-P) solubility from the MCP and MS at pH 2 and 4 (p > 0.05), while O-P solubility from MS at pH 5 to 7 was higher than MCP and found to be significantly different (p < 0.05). O-P solubility from IS was the lowest among the treatments and significantly different from MCP and MS in all the experiments (p < 0.05). The results of this study not only suggest that the struvite pre-treated as MS could be a potential alternative source of P in animal feed but also motivate further studies with more stringent designs to better examine the potential of struvite application in diverse fields.

Highlights

  • Phosphorus (P) is a key element for animal and plant growth as well as an important nutrient for future food security

  • Due to non-replaceability and high economic importance, there might be a political and social tension built over the phosphate rock reserves and the world could move from an oil-based to a phosphate-based economy, as the aforementioned three countries control more than 85% of the known global phosphorus reserves [5]

  • We suggest manufacturing options for struvite recovered from swine wastewater to ensure biological safety and present the possibility of struvite application as an alternative P source in animal feed rations, with the results of an in vivo toxicity test on rats and an in vitro solubility test

Read more

Summary

Introduction

Phosphorus (P) is a key element for animal and plant growth as well as an important nutrient for future food security. Phosphate rock was recently categorized as one of the 20 critical raw materials in Europe since P utilization has been known as a one-way flow and it is classified as a non-renewable resource. In the world, it is mainly three countries (Morocco, China, and the United States), which take the lead in intensive production for phosphate rock [4]. Due to non-replaceability and high economic importance, there might be a political and social tension built over the phosphate rock reserves and the world could move from an oil-based to a phosphate-based economy, as the aforementioned three countries control more than 85% of the known global phosphorus reserves [5]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.