Abstract
BackgroundNotch signaling is highly conserved in the metazoa and is critical for many cell fate decisions. Notch activation occurs following ligand binding to Notch extracellular domain. In vitro binding assays have identified epidermal growth factor (EGF) repeats 11 and 12 as the ligand binding domain of Drosophila Notch. Here we show that an internal deletion in mouse Notch1 of EGF repeats 8–12, including the putative ligand binding domain (lbd), is an inactivating mutation in vivo. We also show that maternal and zygotic Notch1lbd/lbd mutant embryos develop through gastrulation to mid-gestation.ResultsNotch1lbd/lbd embryos died at mid-gestation with a phenotype indistinguishable from Notch1 null mutants. In embryonic stem (ES) cells, Notch1lbd was expressed on the cell surface at levels equivalent to wild type Notch1, but Delta1 binding was reduced to the same level as in Notch1 null cells. In an ES cell co-culture assay, Notch signaling induced by Jagged1 or Delta1 was reduced to a similar level in Notch1lbdand Notch1 null cells. However, the Notch1lbd/lbd allele was expressed similarly to wild type Notch1 in Notch1lbd/lbd ES cells and embryos at E8.75, indicating that Notch1 signaling is not essential for the Notch1 gene to be expressed. In addition, maternal and zygotic Notch1 mutant blastocysts developed through gastrulation.ConclusionMouse Notch1 lacking the ligand binding domain is expressed at the cell surface but does not signal in response to the canonical Notch ligands Delta1 and Jagged1. Homozygous Notch1lbd/lbd mutant embryos die at ~E10 similar to Notch1 null embryos. While Notch1 is expressed in oocytes and blastocysts, Notch1 signaling via canonical ligands is dispensable during oogenesis, blastogenesis, implantation and gastrulation.
Highlights
Notch signaling is highly conserved in the metazoa and is critical for many cell fate decisions
We show that Notch1lbd is expressed on the cell surface but cannot bind to canonical Notch ligands nor signal in response to these ligands
Notch signaling defects in Notch1lbd/lbd embryos To generate mice with Notch1 lacking the putative ligand binding domain, embryonic stem (ES) cells with loxP sequences flanking exons 6 – 8 of mouse Notch1 were generated by gene targeting (Fig. 1A; [13])
Summary
Notch signaling is highly conserved in the metazoa and is critical for many cell fate decisions. Notch activation occurs following ligand binding to Notch extracellular domain. In vitro binding assays have identified epidermal growth factor (EGF) repeats 11 and 12 as the ligand binding domain of Drosophila Notch. We show that an internal deletion in mouse Notch of EGF repeats 8–12, including the putative ligand binding domain (lbd), is an inactivating mutation in vivo. The Notch extracellular domain contains 36 tandem epidermal growth factor-like (EGF) repeats, and three Lin/Notch repeats. Of the 36 EGF repeats in Drosophila Notch, deletion of only EGF repeats 11 and 12 prohibits the binding of the Notch ligands Delta and Serrate in in vitro binding assays [3,4]. Notch signaling in mammals is initiated by binding to canonical Notch ligands (Delta and Jagged) on adjacent cells. The NICD/CSL complex recruits coactivators including mastermind (MAML), and up-regulates a number of target genes including the HES (Hairy/ Enhancer of Split) family of basic helix-loop-helix transcriptional regulators
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have