Abstract
BackgroundHuman Mesenchymal Stem Cells (hMSCs) represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials. Belonging to a glucocorticoid family, Dexamethasone (Dex) is a powerful anti-inflammatory compound that is widely used as therapy in autoimmune disease conditions or allogeneic transplantation. However, minimal immunomodulatory effect of hMSCs may limit their therapeutic uses. Moreover, the effect of glucocorticoids on the immunomodulatory molecules or other regenerative properties of tissue-specific hMSCs remains unknown.MethodHerein, we evaluated the in vitro effect of Dex at various dose concentrations and time intervals, 1000 ng/ml, 2000 ng/ml, 3000 ng/ml and 24 h, 48 h respectively, on the basic characteristics and immunomodulatory properties of Bone marrow derived MSC (BM-MSCs), Adipose tissue derived MSCs (AD-MSCs), Dental Pulp derived MSC (DP-MSCs) and Umbilical cord derived MSCs (UC-MSCs).ResultsThe present study indicated that the concentration of Dex did not ramify the cellular morphology nor showed cytotoxicity as well as conserved the basic characteristics of tissue specific hMSCs including cell proliferation and surface marker profiling. However, quite interestingly it was observed that the stemness markers (Oct-4, Sox-2, Nanog and Klf-4) showed a significant upregulation in DP-MSCs and AD-MSCs followed by UC-MSCs and BM-MSCs. Additionally, immunomodulatory molecules, Prostaglandin E-2 (PGE-2), Indoleamine- 2,3-dioxygenase (IDO) and Human Leukocyte Antigen-G (HLA-G) were seen to be upregulated in a dose-dependent manner. Moreover, there was a differential response of tissue specific hMSCs after pre-conditioning with Dex during mixed lymphocyte reaction, wherein UC-MSCs and DP-MSCs showed enhanced immunosuppression as compared to AD-MSCs and BM-MSCs, thereby proving to be a better candidate for therapeutic applications in immune-related diseases.ConclusionDex preconditioning improved the hMSCs immunomodulatory property and may have reduced the challenge associated with minimal potency and strengthen their therapeutic efficacy.Graphical Preconditioning of tissue specific hMSCs with dexamethasone biomanufacturers the enhanced potential hMSCs with better stemness and immunomodulatory properties for future therapeutics.
Highlights
Human Mesenchymal Stem Cells represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials
Quite interestingly it was observed that the stemness markers (Oct-4, Sox-2, Nanog and Klf-4) showed a significant upregulation in Dental pulp (DP)-MSCs and Adipose tissue (AD)-MSCs followed by Umbilical cord (UC)-MSCs and Bone marrow (BM)-MSCs
There was a differential response of tissue specific Human Mesenchymal Stem Cells (hMSCs) after pre-conditioning with Dex during mixed lymphocyte reaction, wherein Umbilical cord derived MSCs (UC-MSCs) and DP-MSCs showed enhanced immunosuppression as compared to Adipose tissue derived MSCs (AD-MSCs) and BMMSCs, thereby proving to be a better candidate for therapeutic applications in immune-related diseases
Summary
Human Mesenchymal Stem Cells (hMSCs) represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials. Belonging to a glucocorticoid family, Dexamethasone (Dex) is a powerful anti-inflammatory compound that is widely used as therapy in autoimmune disease conditions or allogeneic transplantation. The effect of glucocorticoids on the immunomodulatory molecules or other regenerative properties of tissue-specific hMSCs remains unknown. Dexamethasone (Dex) is a strong synthetic member of the glucocorticoid class of steroid drugs that act as an antiinflammatory and immunosuppressant molecule [4]. Use of Dex to treat autoimmune diseases and to prevent the rejection of transplanted organs or tissues in the host, their impact is often followed by detrimental side effects such as nephrotoxicity or osteoporosis, which may diminish their overall benefits [3, 4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.