Abstract

Genomic DNA of Ostreococcus tauri, a fully sequenced marine unicellular alga from the phytoplankton, was used to amplify a gene coding for a typical front-end desaturase involved in polyunsaturated fatty acid biosynthesis. Heterologous expression in Saccharomyces cerevisiae revealed very high desaturation activity with Delta6-regioselectivity. Short-time kinetic experiments showed that the desaturase product was detected in the acyl-CoA pool 5 min after addition of the exogenous substrate to the yeast medium and long before its appearance in the total fatty acids. When this desaturase was co-expressed with the acyl-CoA Delta6-elongase from Physcomitrella patens and the lipid-linked Delta5-desaturase from Phaeodactylum tricornutum, high proportions of arachidonic or eicosapentaenoic acid were obtained, because nearly all of the Delta6-desaturated products were elongated. Furthermore, the product/educt ratios calculated in each glycerolipid for the Delta6-desaturase or for the acyl-CoA Delta6-elongase were in about the same range, whereas this ratio showed a very uneven profile in the case of the lipid-linked Delta5-desaturase. Finally, a sequence-based comparison of all the functionally characterized Delta6-desaturases showed that this enzyme was not related to any previously described sequence. Altogether, our data suggest that this desaturase from O. tauri is an acyl-CoA Delta6-desaturase, the first one cloned from a photosynthetically active organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call