Abstract
Introduction: Rapid increase in antimicrobial-resistance is leading to urgent need for newer broad-spectrum antimicrobials. Therefore, we have evaluated the antimicrobial résistance spectrum of India-discovered novel antibiotics (levonadifloxacin) against clinical isolates recovered from cancer patients. Materials and Methods: The study was conducted in the microbiology department, over a period of 1 year between May 2021 and June 2022 and 374 consecutive and nonduplicate Gram-positive (GPC) and MDR Gram Negative Bacteria (GNB) isolate were analyzed from 3,880 cancer patients in study. The identification and antimicrobial sensitivities of bacterial isolates were performed according to standard laboratory protocols by using automated identification system (VITEK-2-8.01; BioMérieux, Germany). The activity of levonadifloxacin and comparator antibiotics was evaluated using disk diffusion methods as per Clinical and Laboratory Standards Institute 2022 guidelines. Results: The mean age of the patients were 51.6 ± 14.59 years with male: female ratio of 1.2:1. The prevalence of GPC was 167 (44.65%) and MDR-GNB was 207 (55.34%). The most common GPC was Staphylococcus aureus; 97 (58.08%) followed by Enterococcus species 66 (39.52%). In GNB, Escherichia coli; 93 (44.92%) was the most common followed by Klebsiella pneumoniae; 45 (21.73%). Levonadifloxacin susceptibility was present in 98.7% methicillin-resistant S. aureus and 96% methicillin-susceptible S. aureus and 77.1% Enterococcus-species. Additionally, all the fluoroquinolones-resistant S. aureus isolates were susceptible to levonadifloxacin (WCK-771) except one isolate. Also, levonadifloxacin-(WCK-771) exhibits 100% susceptibility fluoroquinolone susceptible GNB, such as E. coli, K. pneumoniae, Pseudomonas species, and Acinetobacter species. Interestingly, all fluoroquinolones-resistant Salmonella species and Stenotrophomonas maltophilla exhibited 100% susceptibility to levonadifloxacin (WCK-771). Conclusion: Levonadifloxacin (WCK-771) possesses potent activity against all the MDR Gram-positive pathogens including the coverage of susceptible Enterobacterales and MDR S. maltophilla and Burkholderia cepacia suggesting its potential utility in the management of polymicrobial infections.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have