Abstract

BackgroundDeoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A) in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway.Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi) in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection.Results293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS.ConclusionsInfection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2–9 days post infection before animals succumbed to hyperparasitemia similar to infections with the related but non-lethal phenotype P. berghei strain NK65. RT-PCR and Western blot experiments performed with blood from the transfected erythrocytic stages showed that both genes are important for the proliferation of the parasite. Moreover, these experiments clearly demonstrate that the hypusine pathway in Plasmodium is linked to human iNos induction.

Highlights

  • Deoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A in Plasmodium falciparum

  • In vitro knock-down of P. falciparum DHS and eukaryotic initiation factor 5A (eIF-5A) by RNA interference (RNAi) Two different DHS short hairpin RNAs, #43 and #176, expressed from the pSilencer1.0-U6 vector were applied to knock down the DHS protein from P. falciparum

  • The results obtained by RT-PCR analysis show a significant knock-down of plasmodial dhs transcript by the shRNA P #176 construct (Figure 1A, lane 4), as opposed to when the shRNA P #43 was expressed

Read more

Summary

Introduction

Deoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A) in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi) in 293 T cells. The process of RNAi is triggered by the recognition of double-stranded RNA (dsRNA), which is processed into 21–25 nucleotide sequences by Dicer, a cytoplasmic dsRNA specific RNaseII endonuclease [1]. The stage of double stranded (ds) RNA processing may be surpassed by experimentally introducing sequence-specific siRNAs directly into cells. Given the immense Public Health costs for malaria disease and the need for new drug targets a silencing approach employing RNAi might be extremely beneficial for the development of novel and advanced therapeutic strategies. The ability to use RNAi for gene silencing in Plasmodium would provide a powerful means to gain insight into pathogenic blood stages

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.