Abstract
Hydrogen silsesquioxane (HSQ) and Medusa are spin-on-glasses used for several applications and more specifically for electron-beam lithography. To characterize the thermal densification of these resists on silicon, the mean resist film stress was measured in situ as function of temperature up to 600 °C in a vacuum chamber by the curvature method. The curvature was evaluated from 3D profiles of uncoated and coated dies measured by full field phase shifting interferometry. Three resists were investigated: FOx-15, FOx-25 and Medusa-82. The initial resist stress at room temperature after spin coating and baking is slightly compressive and becomes highly compressive above a certain temperature dependent on the resist. This variation is mainly attributed to resists densification. FOx-15 and FOx-25 start densifying at 500 °C, and FOx-25 densifies more than FOx-15. Medusa-82 is densifying around 300 °C and has the highest compressive thermal stress but the film relaxes beyond 405 °C. In the case of FOx-15, it was found that vacuum annealing prevents densification. Finally, we evaluated the in-plane average coefficient of thermal expansion of the resists from stress measurements during cooling to room temperature. For FOx-15, a CTE equal to 1.59 ppm/K is found, while it is 1.73 ppm/K for FOx-25 and 1.38 ppm/K for Medusa-82.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have