Abstract

Biocides are a heterogeneous group of chemical substances intended to control the growth or kill undesired organisms. Due to their extensive use, they enter marine ecosystems via non-point sources and may pose a threat to ecologically important non-target organisms. Consequently, industries and regulatory agencies have recognized the ecotoxicological hazard potential of biocides. However, the prediction of biocide chemical toxicity on marine crustaceans has not been previously evaluated. This study aims to provide in silico models capable of classifying structurally diverse biocidal chemicals into different toxicity categories and predict acute chemical toxicity (LC50) in marine crustaceans using a set of calculated 2D molecular descriptors. The models were built following the guidelines recommended by the OECD (Organization for Economic Cooperation and Development) and validated through stringent processes (internal and external validation). Six machine learning (ML) models were built and compared (linear regression: LR; support vector machine: SVM; random forest: RF; feed-forward backpropagation-based artificial neural network: ANN; decision trees: DT and naïve Bayes: NB) for regression and classification analysis to predict toxicities. All the models displayed encouraging results with high generalisability: the feed-forward-based backpropagation method showed the best results with determination coefficient R2 values of 0.82 and 0.94, respectively, for training set (TS) and validation set (VS). For classification-based modelling, the DT model performed the best with an accuracy (ACC) of 100 % and an area under curve (AUC) value of 1 for both TS and VS. These models showed the potential to replace animal testing for the chemical hazard assessment of untested biocides if they fall within the applicability domain of the proposed models. In general, the models are highly interpretable and robust, with good predictive performance. The models also displayed a trend indicating that toxicity is largely influenced by factors such as lipophilicity, branching, non-polar bonding and saturation of molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.