Abstract
To investigate the effect of α3 and α5 helices on the biochemical characterization of Bacillus thermocatenulatus lipase (BTL2), both helices were deleted from native BTL2 lipase. After structural modeling and characterization, the truncated btl2 gene (Δbtl2) was cloned into E. coli BL21 under the control of the T7 promoter. After cultivation and induction of the recombinant bacteria, the Δα3α5 lipase was purified by Ni-NTA column chromatography. Next, the biochemical properties of the Δα3α5 lipase were compared with the previously expressed and purified native lipase. In the presence of the substrate tributyrin (C4), the maximum activity of native and Δα3α5 lipase was 9360 and 5000 U/mg, respectively. The deletion changed the substrate specificity from tributyrin (C4) to tricaprylin (C8) substrate. Native and Δα3α5 lipase showed similar activity patterns at all temperatures and pH values, with the activity of Δα3α5 lipase being approximately 20% lower than native lipase. Triton X100 increased the activity of native and Δα3α5 lipases by 2.1- and 2.5-fold, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.