Abstract

We developed and implemented an ensemble-refinement method to study dynamic biomolecular assemblies with intrinsically disordered segments. Data from small angle X-ray scattering (SAXS) experiments and from coarse-grained molecular simulations were combined by using a maximum-entropy approach. The method was applied to CHMP3 of ESCRT-III, a protein with multiple helical domains separated by flexible linkers. Based on recent SAXS data by Lata etal. (J. Mol. Biol. 378, 818, 2008), we constructed ensembles of CHMP3 at low-and high-salt concentration to characterize its closed autoinhibited state and open active state. At low salt, helix α(5) is bound to the tip of helices α(1) and α(2), in excellent agreement with a recent crystal structure. Helix α(6) remains free in solution and does not appear to be part of the autoinhibitory complex. The simulation-based ensemble refinement is general and effectively increases the resolution of SAXS beyond shape information to atomically detailed structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.